Effect of lattice orientation, surface modulation, and applied fields on free-surface domain microstructure in ferroelectrics

نویسندگان

  • Lun Yang
  • Kaushik Dayal
چکیده

Ferroelectric perovskites are used in various transducer, memory and optical applications due to their attractive electromechanical and optical properties. In these applications, the ferroelectrics often have complex geometries with a significant portion of the surface free and unshielded by electrodes. The free surfaces play an important role in determining microstructure due to the intricate balance between preferred polarization orientation, mechanical stresses, and stray electric fields that exist outside the specimen. In addition, the stray electric fields at free surfaces are exploited for photochemical reactions and self-assembly. Hence, it is important to predict the domain patterns, stray fields, and mechanical stresses that form in these geometries. We apply a phase-field model in combination with finite-element and boundary-element methods for real-space calculations of microstructure at free surfaces in ferroelectrics. A key advantage of the boundary-element method is that it enables us to calculate the stray electric fields outside the specimen. We examine the effect of lattice orientation, surface modulation and applied far-field stress and electric field on domain microstructure and stray electric fields. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Space Phase Field Simulations of Ferroelectric Materials

Ferroelectric perovskites are used in various transducer, memory and optical applications due to their attractive electromechanical and optical properties. In these applications, ferroelectrics often have complex geometries and function under complex electro-mechanical loadings. Phase-field models are typically used to predict the formation of microstructural patterns and subsequent evolution f...

متن کامل

Real-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields

Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phasefield model to consistently simulate various PFM configurations. We model the PFM tip as...

متن کامل

Microstructure and stray electric fields at surface cracks in ferroelectrics

Ferroelectric perovskites are widely used in transducer, memory and optical applications due to their attractive electromechanical and optical properties. In these brittle materials, reliability and failure of devices is dominated by the behavior of cracks. The electromechanical coupling causes cracks to interact strongly with both mechanical as well as electrical fields. Additionally, cracks a...

متن کامل

Effect of Aluminum on Microstructure and Thickness of Galvanized Layers on Low Carbon silicon-Free Steel

In hot dip galvanizing, several parameters such as chemical composition of coating bath, immersion time and surface roughness of specimens could affect microstructure and properties of coating. In this article, the effect of aluminum content, immersion time and surface roughness on structure and properties of alloy layers have been investigated. Specimens of low carbon silicon-free steel with d...

متن کامل

Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011